

Database integrity tools

Axiell ALM Netherlands BV
Copyright © 2010-2022 Axiell ALM Netherlands BV® All rights re-
served. Adlib® is a product of Axiell ALM Netherlands BV®

The information in this document is subject to change without notice
and should not be construed as a commitment by Axiell ALM Nether-
lands BV. Axiell assumes no responsibility for any errors that may ap-
pear in this document. The software described in this document is fur-
nished under a licence and may be used or copied only in accordance

with the terms of such a licence.

Though we are making every effort to ensure the accuracy of this
document, products are continually being improved. As a result, later
versions of the products may vary from those described here. Under
no circumstances may this document be regarded as a part of any
contractual obligation to supply software, or as a definitive product
description.

Contents

1 ValidateDatabase 5

2 RemoveTagsFromData 9

3 IndexCheck 13
3.1 Introduction 13
3.2 Running IndexCheck 14
3.3 Typical problems with indexes 16

4 LinkRefCheck 17
4.1 Introduction 17
4.2 Running LinkRefCheck 19
4.3 Typical problems with link references 23

5 ConvertInternalLinks 25

6 InternalLinkCheck 31

7 RemoveLanguageFromData 32
7.1 To convert a multilingual field into a unilingual one 32
7.2 Remove certain multilingual data 32
7.3 The log 33

8 AddDataLanguage 34

5

1 ValidateDatabase

The purpose of the ValidateDatabase.exe tool is to check one or more
Adlib databases for any tags that have not been defined in the data
dictionary (your .inf database structure files) and report on them. The
tool works on SQL databases only.

In Adlib it has always been possible to store data in field tags which
haven’t been defined in the data dictionary. You can do that by asso-
ciating an undefined tag with a screen field, by assigning a value to an

undefined tag by means of an adapl or via an import mapping to one

or more undefined tags. This functionality has certain advantages, but
a disadvantage definitely is that you’ll easily lose track of what tags
are actually in use. This may lead to data corruption once you define a
tag in the data dictionary, for purpose x, while that tag is already in
use on a screen, for example, for purpose y. Therefore it’s better to
define all used tags in the data dictionary.

The Adlib API as used by wwwopac.ashx 7.2 and higher, as well as
Axiell Collections, implement a strict policy concerning the definition of
field tags: all tags used in records that you read or write using this
software, must have been defined in the data dictionary. So when
you’re about to start using wwwopac.ashx for your website or Axiell
Collections, you may encounter errors because of this. The Validate-

Database tool can help you identify the tags causing the problems,
after which you can still define them in the relevant .inf and solve the
issue.

To be precise: the tool produces a list of valid (already defined) and
invalid tags for which no definition has been found. It also counts the
number of appearances of both the defined and undefined tags in the
records. Further, it has a fix option which automatically creates pro-

visional, generic field definitions for all unknown tags, using some de-
fault settings. Although using the fix option is a quick fix you may

also, afterwards, consider checking the relevant records for redundant

data and clean them up, and edit the settings of the automatically
created fields to actually reflect the data you store in those fields.

The ValidateDatabase.exe tool must be called from the operating sys-
tem command line – type cmd in the Windows Explorer address field

and press Enter to open a command line window - with the following

syntax:

ValidateDatabase <data folder> [database name | *] [check|fix]

 Database integrity tools

6

Everything between [and] is optional. | means: enter either one of

both arguments. Leave out all brackets.

Either specify a single database name (the name of an .inf file with or
without the .inf extension) or use * to check all databases in the data
folder. Use check to just report a list of defined and undefined tags or

use fix to automatically create field definitions for all undefined tags.

For example, to check just the collect database if you placed the
\ValidateDatabase folder containing the tool files as a subfolder in
your Adlib \data folder and call the executable from its own folder:

ValidateDatabase ..\ collect check

Example of a partial result:

C:\Adlib Software\Model application 4.2 NL

SQL\data\ValidateDatabase>validatedatabase ..\ collect

check

Started: collect

Unknown tags:

LS,CO,%B,X8,CN,CH,BS,BH,CD,BP,BI,x1,x2,CR

Tag count in record (invalid tags)

LS: 15

CO: 7

%B: 15

x1: 15

x2: 6

CR: 1

Tag count in record (valid tags)

vm: 670

vi: 105

tx: 685

PB: 5

Lq: 4

Completed: collect

To write the entire list to a text file in the current folder, use a syntax
like:

ValidateDatabase ..\ collect check > myundefinedtags.txt

To automatically create field definitions for all undefined tags in col-

lect, you would use:

ValidateDatabase ..\ collect fix > myundefinedtags.txt

This will create field names with the syntax:

provisional_field_for_<tag>

For example:

provisional_field_for_LS

Database integrity tools

7

These fields will be normal text fields of undefined length, having only

an English field name. It is recommended to rename these fields and
set their other properties according to their purpose, using Adlib De-
signer.

9

2 RemoveTagsFromData

The purpose of the RemoveTagsFromData.exe tool is to remove tags
and their content from your records in one or more Adlib databases.
The reason you may want to do this is not just to clean up your data-
bases but also because Axiell Collections and the Adlib API as used by
wwwopac.ashx 7.2 and higher implement a strict policy concerning
the definition of field tags: all tags used in records that you read or
write using the API or Collections, must have been defined in the data

dictionary. So when you’re about to start using wwwopac.ashx 7.2 or
higher, you’ll either have to make field definitions for all undefined

tags (using the ValidateDatabase.exe tool and Adlib Designer) or
you’ll have to remove the undefined tags from your data using the
RemoveTagsFromData tool. The tool works on SQL databases only.

Before you start removing tags you must be absolutely sure that you
are not deleting valuable data, such as undefined link reference tags

or screen tags for example. Basically, the procedure to follow is this:

1. Make a backup of your SQL database to start with (just to be
safe).

2. Subsequently use the ValidateDatabase tool to check one or more
of your Adlib databases for any tags that have not been defined in

the data dictionary and report on them.

3. Then use the RemoveTagsFromData tool with the check option to

identify the records containing certain undefined tags. Or search

on any of the problematic tags using the Advanced search in Adlib
for Windows – e.g. use a search statement like: <tag> = *, and

replace <tag> by the relevant field tag – to find the same records.

4. Now preferably check each identified or found record in the search
result for the content of the tag: you can check all tags and their
values stored in a record if you look at the record contents via
Ctrl+R, while in detailed display mode (in Adlib for Windows).

Watch out for incidental tags that have only been defined on
screen (associated with a screen field): the contents of these
fields are plainly visible in detailed presentation of a record, are
properly stored in the database and you’ll want to keep them, but

a field definition in the data dictionary is still missing. You can use
Designer to search for screens possibly containing a specific unde-
fined tag: unfortunately there’s no real quick way to determine if
any of a list of undefined tags appears anywhere on a screen in
the data source associated with the relevant database. However,

 Database integrity tools

10

the contents of an undefined tag (obtained with Ctrl+R) in some

randomly picked records may give you an idea of the likeliness of
the tag appearing anywhere on screen.
Also watch out for undefined tags starting with the lowercase let-
ter “l” and/or containing a number, especially tags like l1, l2, etc.
as these could be link reference tags in use by linked fields: you
should keep these tags and make a proper field definition for

them, using Adlib Designer. In Designer you can check for every
linked field if it uses a defined or undefined link reference tag by
looking at the Forward reference property: if the property displays
a field name, then the tag/field has been defined in the data dic-
tionary all right; if the property displays just a tag, it probably

hasn’t been defined.

5. Finally, if you are sure your undefined tag contains no valuable

data, you can remove it from these records using the Re-
moveTagsFromData tool with the fix option.

When the procedure saves an edited record, no indexes will be updat-
ed! The updating of indexes is not required if you use the tool for its
intended purpose, which is to delete tags that have entered your rec-
ords unintentionally at one time or another, during an import or be-
cause of some adapl procedure for example. These tags won’t have
indexes anyway because the fields themselves have never been speci-

fied in the data dictionary.

The RemoveTagsFromData.exe tool must be called from the operating
system command line with the following syntax:

RemoveTagsFromData <data folder> [fix|check] [database list | *]

[tag list] [priref]

Everything between [and] is optional. | means: enter either one of
both arguments. Leave out all brackets.

• The <data folder> is mandatory. You can enter a relative path.

• Use the literal value fix to remove all specified tags from the

specified records or use check if you would just like to know in

which records the specified tags have been found (and not remove
any tags just yet). The default argument is check.

• For the [database list], either specify a single database name

(the name of an .inf file with or without the .inf extension), use a
comma-separated list of database names (e.g. collect,document

without a space behind the comma) or use * to check all data-

bases in the data folder.

Database integrity tools

11

• The [tag list] must be a comma-separated list of the Adlib tags

you wish to remove or check (e.g. T6,aA,w9 without a space be-

hind the commas). Instead of specifying a list you can enter * to

target all tags in the database: with the fix argument this would

effectively empty the specified records entirely (the records are

not deleted but emptied)!
If a tag contains a smaller-than (<) or larger-than (>) character
you need to escape that character by enclosing it in double
quotes. So a field tag like <n needs to be entered as "<"n.

• Use the optional [priref] argument to specify either a single

record (its record number) from which the specified tags have to

be removed or leave the argument out (or enter *) to fix or check

all records in the specified databases.

For example, if you placed the \RemoveTagsFromData folder contain-
ing the tool files as a subfolder in your Adlib \data folder and call the
executable from its own folder:

RemoveTagsFromData ..\ check collect BP

Example of a check result:

Started 12:11:01

Started checking database 'COLLECT.inf'

Found tag 'BP', occurrence '1' in record '151'

Found tag 'BP', occurrence '1' in record '153'

Found tag 'BP', occurrence '1' in record '154'

Found tag 'BP', occurrence '1' in record '155'

500 records processed, 0 records modified in 00:00:00,

speed: 384142 recs/minute

Completed checking database 'COLLECT.inf'

Completed '569' records, modified '0' records

To write the result to a text file in the current folder, use a syntax
like:

RemoveTagsFromData ..\ check collect BP > CheckRecords.txt

The result allows you to check these records manually first. To actual-
ly remove the tag and its contents from these records, you could exe-

cute:

RemoveTagsFromData ..\ fix collect BP

In this example the result would be:

Started 12:19:06

Started fixing database 'COLLECT.inf'

Found tag 'BP', occurrence '1' in record '151'

Found tag 'BP', occurrence '1' in record '153'

Found tag 'BP', occurrence '1' in record '154'

 Database integrity tools

12

Found tag 'BP', occurrence '1' in record '155'

500 records processed, 4 records modified in 00:00:00,

speed: 137012 recs/minute

Completed fixing database 'COLLECT.inf'

Completed '569' records, modified '4' records

13

3 IndexCheck

3.1 Introduction

The purpose of the command-line Adlib IndexCheck tool is to check
whether indexes are correct, by reading all records again and compar-
ing the current contents of the index to what is supposed to be in-
dexed. If wrong keys appear in the current index, or if values from
records are still missing in it, IndexCheck can automatically perform

repairs to yield a correct index. (This of course asummes that In-

dexCheck is flawless in this respect.) To be more precise:

1. For all indexes, the orphan keys will be removed from the index
tables: orphan keys are keys which point to non-existing records.
This will be done for all indexes, not just for the indexes provided
to IndexCheck on the command-line.

2. All records, or only the record(s) indicated in the command-line
statement, will be looked up in the SQL database one by one, and

for each record the following actions will be executed:

a. Of the provided indexes (list_of_tags), the keys to be in-

dexed will be retrieved from the record (let’s call them record
keys).

b. For the free-text (word) indexes with keys appearing in the
record keys, which have no matching word in the wordlist yet,
a new word number will be determined and this word (the
missing key) and its number will be added to the wordlist.

c. Of the provided indexes, the existing keys will be retrieved
from the index tables (let’s call them index keys).

d. If there are more record keys than index keys, then those ex-
tra keys will be added to the index table. IndexCheck will re-

port this action as “MissingIndexValue…”.

e. If there are more index keys than record keys, then the index
keys which no longer occur in the records will be removed

from the index table. IndexCheck will report this action as “Ex-
traIndexValue…”.

 Database integrity tools

14

3.2 Running IndexCheck

1. For safety reasons, create a backup of your Adlib application and
database, if you haven’t done that yet. See the Installation guide
for Museum, Library and Archive for more information. It is also
wise to try out IndexCheck in a test environment before applying
it to a live database.

2. Copy the IndexCheck files to a temporary folder on the machine
that also runs the SQL server. This will spare your local network
the extra load. (The Adlib \data folder doesn’t need to be on that
same server though.)

3. To run IndexCheck as efficiently as possible, make a few settings
for the database. Open the properties of your database in Mi-
crosoft SQL Server Management Studio (or a similar tool), set the

Autogrowth size on the Files page to 100 MB, and on the Options
page, set the Recovery model to Simple.

4. If you also want to run LinkRefCheck, then always run IndexCheck
before LinkRefCheck, not the other way around.

5. IndexCheck can be controlled by command-line parameters. To
provide these parameters, open a command line window and

execute IndexCheck using the following syntax:

<(path to)indexcheck> <path_to_the_data_folder> [fix|check]

[list_of_databases] [list_of_tags] [priref or priref range]

[true|false] [logFile]

The data folder is mandatory and should point to the location
where the .inf files are stored. Everything between [] is optional,
but if you want to use e.g. the last parameter, you’ll also have to
use all the preceding ones.

• If you use the check parameter, then IndexCheck will only

report errors and does nothing to fix them, although it will
also report keys that would have to be added to, or deleted

from, the indexes. On the other hand, if you use fix,

IndexCheck will check, add and delete relevant keys and will
fix some other errors. The default value is check (or use an

asterisk instead).

Use an asterisk to indicate the position of parameters with a
default value, if other entered parameters require a non-
default setting. See the examples.

http://www.adlibsoft.com/support/manuals/installation-guides/installation-of-adlib-museum-library-and-archive
http://www.adlibsoft.com/support/manuals/installation-guides/installation-of-adlib-museum-library-and-archive

Database integrity tools

15

• list_of_databases is a comma-separated list (use no spaces

in such lists) of Adlib-databasestructure files to check (names
of .inf files without the extension). Not providing this list, or
entering an asterisk, will check all Adlib databases.

• list_of_tags is a comma-separated list of Adlib tags of which

the index tables must be checked. By default, IndexCheck
checks all indexes. Entering an asterisk at this position also
checks all indexes.

• priref or priref range is either the record number of a

single record to process or a priref range in the format
startpriref-endpriref. (The priref range option is available

from version 1.10.1.848.) By default (if you leave a record

number or record number range), IndexCheck processes all
records in the provided databases. Entering an asterisk at this
position also processes all records.

• true ignores all word indexes. LinkRefCheck requires correct

indexes but doesn’t do anything with word indexes. So when
you run IndexCheck for this purpose, ignoring the word index-
es improves the performance of IndexCheck. Moreover, De-
signer has an option to reindex all word indexes. The default

value is false. Entering an asterisk at this position also

means false.

• If you want reports of errors in indexes to be written to a log

file, then provide the name of that text file in logFile.

6. After running IndexCheck, an overview of the results will be dis-
played, per database showing the number of records processed,
the total number of deleted keys (in the Extra column), the total
number of keys added to indexes (in the Missing column), the
number of errors and the run time.
Any errors will be listed individually as well. Of conversion errors
(when field data is of the wrong data type and cannot be convert-

ed to the proper type), the relevant field tag, its field occurrence,

the actual data of the field occurrence that caused the problem
and the priref (record number) of the relevant record will be
shown: you will have to correct those errors manually, e.g. by ed-
iting those records in Adlib or Axiell Collections.

Examples:

• indexcheck "..\Adlib software\data" check "col-

lect,document" * * * "check2.txt"

 Database integrity tools

16

• indexcheck "..\Adlib software\data" fix "document" TI *

* "check2.txt"

• indexcheck "..\Adlib software\data" fix * * * *

"fix3log.txt"

• indexcheck "..\Adlib software\data" check

3.3 Typical problems with indexes

• Because of some bug in a specific version of Adlib for Windows,
Axiell Collections, import.exe or Adlib Designer, errors may have

been introduced into an index.

• If the definition of a field has changed, while the index definition
hasn’t, keys may be too long, cut off, or of the wrong data type,
etc.

• Because of some bug, duplicate words may appear in the wordlist

index (which has to be unique* per data language). You can use
Adcopy to solve this problem.
Without Adcopy, you’d have to remove all duplicates in the same
language from the wordlist manually, directly in the SQL table.
You could also clear the entire wordlist index this way.
In both cases you’ll have to reindex all word indexes for all Adlib

databases, but the second way takes more time to complete,

which means more downtime. See the SQL Server and Oracle
document for more information about managing the SQL database
directly.

* The SQL index on the word number of every word in the wordlist
must always be unique, even for identical words in different lan-

guages. In Microsoft SQL Server Management Studio you can
check this: open the Tables node of your SQL database in the Ob-
ject explorer, and underneath it open the Indexes node. In the
properties of the wordlistnumberindex you can see if it has been

set to Unique.

http://www.adlibsoft.com/support/manuals/maintenance-guides/sql-server-and-oracle

Database integrity tools

17

4 LinkRefCheck

4.1 Introduction

The purpose of the command-line Adlib LinkRefCheck tool is to make
sure that the reference in the link reference tag of linked fields in a
SQL database points to an existing linked record, and that no value is
stored in the linked field itself. It also empties any accidentally stored
merged-in fields, because merged-in fields shouldn’t be stored in the

database either.

If a correct link reference is present (pointing to an existing record in
the linked database), and the linked field value itself and any merged-
in field values do not appear in the stored record, then things are how
they should be, so nothing is changed. Different erroneous situations
for a linked field can in principle exist though, which will all be fixed by
LinkRefCheck as follows:

• A correct link reference is present (pointing to an existing record

in the linked database), and the linked field tag itself appears in
the stored record, either filled in or empty. LinkRefCheck will
check if the local value in the tag matches the linked record. If

not, LinkRefCheck reports the error. The linked field tag plus its
value will always be removed, so the link reference remains.

• No link reference is present but a value has been stored in the
linked field itself. LinkRefCheck will check whether the value ap-

pears in the linked database. If it does, the record number will be
copied to the link reference tag of the linked field, and the linked
field tag plus value will be removed. If it doesn’t, a new linked
record will be created and its record number will be copied to the
linkref tag of the linked field, after which the linked field tag plus
value will be removed.

If the indexed value appears in the linked database multiple

times, LinkRefCheck cannot select the proper linked record (it
won’t check data in the records themselves) and it will generate a
message stating that multiple terms were found. The linked field
tag plus value won’t be removed, so you’ll have to make a proper
link in the relevant record manually later on (and then run
LinkRefCheck again).

When a record is forced into the linked database, LinkRefCheck
has no knowledge of datasets. In the Thesaurus there usually are
no datasets, so no problem there, but in a database with datasets
the new record would just get the highest, first available record

 Database integrity tools

18

number, regardless of the dataset containing that record number.

In this case you would have to move (derive) records from one
dataset to another manually later on, if records were forced into
the wrong dataset, and maybe also edit automatically stored data
like the material type.
Links on secondary, term indexed long text fields are problematic.

For example, from the Collect database to the Document database
there’s such a link on the documentation.title field. In Docu-

ment, the title field is primarily indexed as a word index and sec-
ondarily as a term index on a dummy field. The link from Collect
must use this secondary index. LinkRefCheck will also use this in-
dex to find out if a title stored in the linked field occurs in Docu-

ment already (also when earlier forced by LinkRefCheck), but
when it forces a new title record in Document, it cannot store the

title in the proper title field because it doesn’t know the tag: it’ll
store the title in the dummy field instead. This means the forced
records will have an empty title field, so again, you’ll have to edit
such forced records later on by hand to fix this. You’ll know which
records were forced into the linked database because of the mes-
sages LinkRefCheck generates during the process.

• The link reference points to a non-existing record in the linked
database, and the linked field tag itself has (correctly) not been
stored in the record. LinkRefCheck reports the error and will re-

move the faulty link reference.

• The link reference points to a non-existing record in the linked
database, and the linked field tag itself has a value. LinkRefCheck
will first remove the erroneous link reference. Then it will check

whether the linked field value appears in the linked database. If it
does, the record number will be copied to the link reference tag of
the linked field, and the linked field tag plus value will be re-
moved. If it doesn’t, a new linked record will be created and its
record number will be copied to the linkref tag of the linked field,
after which the linked field tag plus value will be removed.
LinkRefCheck will report the error.

• For a reversely linked field in record A a correct link reference to a
record B exists while for the associated reversely linked field in
record B no link reference to record A exists. LinkRefCheck will
add the missing record A link reference to the relevant link refer-
ence field in record B.

• LinkRefCheck does not deal with inherited fields. Prior to version

1.10.1.1031, inheritance could lead to an error processing certain
records, giving an Object reference not set to an instance of an
object error.

Database integrity tools

19

4.2 Running LinkRefCheck

1. For safety reasons, create a backup of your Adlib application and
database, if you haven’t done that yet. See the Installation guide
for Museum, Library and Archive for more information. It is also
wise to try out LinkRefCheck in a test environment before applying
it to a live database.

2. LinkRefCheck requires that all source and destination fields used
as merged-in fields with a linked field (see the Linked field map-
ping properties tab of a linked field in the data dictionary (the da-
tabase structure) in the Designer Application browser) have actual

field definitions in the data dictionary, so it’s not enough to use
undefined tags. Use the Designer Application tester tool on your
application to find out if there are such undefined merge tags in

your data dictionary. If so, you should look up each relevant map-
ping and decide if source and/or destination field definitions
should be added to the data dictionary or whether to remove that
mapping: if both source and destination tags have no field defini-
tion, you can remove that row from the relevant mapping; if only
the target tag has no field definition, you should create one for it;

if the target field definition exists while the source tag doesn’t,
you should decide for yourself.

3. Copy the LinkRefCheck files to a temporary folder on the machine
that also runs the SQL server. This will spare your local network
the extra load. (The Adlib \data folder doesn’t need to be on that
same server though.)

4. To run LinkRefCheck as efficiently as possible, make a few set-

tings for the database. Open the properties of your database in
Microsoft SQL Server Management Studio (or a similar tool), set
the Autogrowth size on the Files page to 100 MB, and on the Op-
tions page, set the Recovery model to Simple.

5. Only run LinkRefCheck after making sure that your indexes are

correct, in other words: by using IndexCheck (or Adcopy) first.

6. LinkRefCheck can be controlled by command-line parameters. To

provide command-line parameters, open a command line window
– type cmd in the Windows Explorer address field and press Enter

to open a command line window - and execute LinkRefCheck using
the following syntax:

http://www.adlibsoft.com/support/manuals/installation-guides/installation-of-adlib-museum-library-and-archive
http://www.adlibsoft.com/support/manuals/installation-guides/installation-of-adlib-museum-library-and-archive

 Database integrity tools

20

<(path to)linkrefcheck> <path_to_the_data_folder>

[fix|check|createtables] [list_of_databases] [list_of_tags]

[priref] [user_name] [log_file]

The data folder is mandatory and should point to the location
where the .inf files are stored. Everything between [] is optional:

• If you use the parameter check, then LinkRefCheck will only

report errors and does nothing to fix them. If you use fix,

LinkRefCheck both checks and fixes any errors. The
createtables parameter checks if there are index definitions

for which no matching SQL table exists yet and then creates
those tables. The default value is check (or use an asterisk

instead).
Use an asterisk to indicate the position of a parameter with a
default value, if not all optional parameters must be used in

the default setting. See the examples.

• list_of_databases is a comma-separated list (use no

spaces) of Adlib-databasestructure files to check (names of
.inf files without the extension). Not providing this list, or
entering an asterisk, checks all Adlib databases.

• list_of_tags is a comma-separated list of Adlib tags of

linked fields to check. By default, LinkRefCheck checks all
tags. Entering an asterisk at this position also checks all tags.

• priref is either the number of a single record to check, a

comma-separated list of prirefs to check (separate only by a
comma and use no spaces) or a range of prirefs (provide the

first and last priref in the range and separate them by a hy-
phen without spaces around it). The list and range options are
available from LinkRefCheck version 1.10.1.1025. By default
(without providing any prirefs), LinkRefCheck checks all
records in the provided databases. Entering an asterisk at this
position also checks all records.

• user_name is an optional user name that must be written to

the management details in records edited by LinkRefCheck, if

you don’t want LinkRefCheck to use your own login name (the
system user) for this purpose. Date and time of editing and
the current database name will also be written in the record.
LinkRefCheck uses the standard Adlib tags nm, dm, tm and vm

to write to. If you built your database yourself, and are using
these tags for other purposes, then be aware that these tags
can be overwritten by LinkRefCheck. Entering an asterisk
means LinkRefCheck will use the system user name.

Database integrity tools

21

• If you want reports of faulty link references to be written to a

log file, then provide the name of that text file in log_file.

The log file will always contain an overview comparable to the
following:

LinkRefCheck started...Check, 5-11-2010 17:10:00
Running in folder ..\CMS.20102969\data

Starting linkref check for database address
Finished linkref check for database address, 17902 records
checked, 0 updated.
Link ref check completed, 5-11-2010 18:32:33

The following messages may appear in the log file:

Message example Meaning

Added missing reverse
linkref 10128, link ref tag =
ly in database address, rec-
ord 4426

A missing reverse link was
added.

Deleted link to non-existent
record from record 127,
field=BC, linkref=125,
LinkRefTag=ly, Linked data-

base=address

A link (the link reference tag)
to a non-existing record was
removed by LinkRefCheck. A
possible cause for the error

might have been that in the
past, feedback links hadn’t

been set, and records in the
linked database had been
removed when references to
them in other databases
were still present.

Deleted merge data for rec-
ord: 10985, Tag=BD,
Occ=1, 'Data=London His-
torical Museum, LinkRef =

4296, LinkRefTag=lz, Linked
database=address

A local (filled or empty)
linked field was removed be-
cause the linked field itself
should not appear in the rec-

ord, only the link reference
tag should.

Mismatch in record: 10277
between link reference and
linked field; data is re-
moved; reference is pre-
served, Occ=3, linkref=ly,
value=16282, linked

field=BC, 'data=Brandt,

The contents of the linked
field (which shouldn’t have
been stored) does not match
the contents of the field in
the linked record referenced
in the link reference field.

The link has been repaired by

 Database integrity tools

22

W.A.' deleting the linked field and

keeping the link reference
tag and its contents.

New domain forced in 'the-
sau', priref = 3037, domain
= 'SU144'

A domain was added to a
linked Thesaurus record.

Record forced in 'thesau',
priref = 104296, key =

'Landscape'

A linked record has been
forced into the Thesaurus.

Removed circular link
10080, link ref tag = ly from
database address, record
10080

A link to the record itself (a
circular link) was removed.

Resolved link for record:
10599, Tag=CH, Occ=1,
"Data='van'", LinkRefTag=li,
linkRef=21174, Linked da-
tabase=thesau

A non-processed link was
processed by means of the
value in the linked field, so
the link reference tag was
filled after which the linked
field was removed.

Examples:

• linkrefcheck "..\Adlib software\data" check "col-

lect,document" * * "AIS" "logfiles\check2.log"

• linkrefcheck "..\Adlib software\data" fix * * * * "log-

files\fix3.log"

• linkrefcheck "..\Adlib software\data" fix collect *

2,4,100 * "logfiles\fix3.log"

• linkrefcheck "..\Adlib software\data" fix collect * 1-

120 * "logfiles\fix3.log"

• linkrefcheck "..\Adlib software\data" check

Database integrity tools

23

4.3 Typical problems with link references

• If many records have faulty link references (pointing to non-
existing records), while feedback links are missing in the linked
database, it is likely that someone removed authority records in
the linked database without first cleaning up all the records refer-
encing those authority records.

• If many records contain stored values in the linked fields, while
they do have an associated link reference tag (filled in or not), it
is likely that someone changed the definition of a normal field into
a linked field while data was present in the normal field.

25

5 ConvertInternalLinks

The purpose of the Adlib ConvertInternalLinks.exe tool is to convert
both the structure and contents of fields internally linked on value (as
was the case in Adlib model applications older than version 4.5.2a) in
one or more tables in your Adlib SQL database to fields internally
linked on reference. The tool takes care of everything, provided
you’ve created a correct preferences.xml configuration file to instruct
the tool about the relevant fields and databases.

Internal link types

 Database integrity tools

26

Internally linked fields are fields that link to other fields in the same
Adlib database. Typically, such fields appear in the thesau (Thesau-

rus) and people (Persons and institutions) databases, but other data-
bases can have them as well.

Internally linked fields can be linked on value (the term registered in
the linked record) or reference (the record number of the linked
record). Adlib model applications older than version 4.5.2a typically
have internally linked fields linked on value, as can be seen in the

image above, where the Forward reference field property is empty for
the used_for field (and all other internally linked fields): if this
property does not contain a field name or tag to store the record

number of the internally linked record in, the link will be on value.

Internally linked fields on reference have several advantages,
amongst which: they allow for non-unique term indexes (so you can
register identical terms with different meanings in separate records)

and the displayed values in the internally linked fields on reference
always reflect the current state of the linked record. So in model
applications 4.5.2a and higher this type of internal link has become
the default.

Adlib for Windows (adlwin.exe) can handle both types of internal links,

but Axiell Collections and wwwopac.ashx (from version 3.7.14032),
require the internal links in your database to have been linked on ref-

erence: if not, most API seaches on linked fields won’t work any more
and yield errors. This means that only if you wish to use Axiell Collec-
tions or the Adlib API to access pre-4.5.2a databases, then your data-
base will have to be converted using the ConvertInternalLinks tool.

Follow the steps below to execute the conversion:

1. Edit the preferences.xml file that comes with the tool. You can

specify multiple Adlib databases (SQL tables) and per Adlib data-
base multiple internally linked fields. You should always convert all
internal links in a database, not just some of them. The link refer-

ence tags you enter in this file must be tags that do not appear in
the relevant data dictionary already: they will be added to the .inf
file by the conversion procedure. An example of a preferences.xml
file is the following:

Database integrity tools

27

<?xml version="1.0" encoding="utf-8"?>

<Preferences xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <DatabasePath>C:\Adlib\data</DatabasePath>

 <DatabaseCollection>

 <Database>

 <Name>thesau</Name>

 <LinksCollection>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>us</Tag>

 <LinkrefTag>l1</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>uf</Tag>

 <LinkrefTag>l2</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>bt</Tag>

 <LinkrefTag>l3</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>nt</Tag>

 <LinkrefTag>l4</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>rt</Tag>

 <LinkrefTag>l5</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>et</Tag>

 <LinkrefTag>l6</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>so</Tag>

 <LinkrefTag>l7</LinkrefTag>

 </Link>

 <Link>

 <BaseTag>te</BaseTag>

 <Tag>se</Tag>

 <LinkrefTag>l8</LinkrefTag>

 </Link>

 </LinksCollection>

 </Database>

 </DatabaseCollection>

</Preferences>

 Database integrity tools

28

XML element Meaning

DatabasePath the path to your Adlib \data folder.

Database must contain the mapping for a single table.

Name the name of the relevant .inf file.

Link must contain a single field mapping

BaseTag the tag of the lookup field for the link

Tag the tag of the linked field

LinkrefTag a new tag for the link reference field

2. Create a backup of your SQL database and Adlib \data subfolder.
This conversion may have far-reaching consequences if anything
goes wrong. Therefore you should create a backup of your data-

base and .inf files before you start the procedure, just to be safe.
That way, you can always repair any errors. See the Installation
guide for Museum, Library and Archive for more information about
creating backups.

3. Make sure that no-one is working with Adlib and run Con-

vertInternalLinks.exe from a location that has (write) access to
the Adlib \data subfolder. The preferences.xml file should be pre-

sent in the folder from which you run ConvertInternalLinks.exe. To
write a log file with the result of the procedure, add > log.txt to

the command line, e.g.:

C:\Temp\ConvertInternalLinks.exe > log.txt

The created log file will resemble the following:

http://www.adlibsoft.com/support/manuals/installation-guides/installation-of-adlib-museum-library-and-archive
http://www.adlibsoft.com/support/manuals/installation-guides/installation-of-adlib-museum-library-and-archive

Database integrity tools

29

In the background, the procedure performs the following tasks:
1. a clone (SQL) table will be created for the processed database;
2. all records that contain internal links will be copied to the clone

table and will be adjusted with link references after which the lo-
cally stored terms will be removed;
3. the data dictionary (.inf file) of the source database will be ad-

justed with the new link reference fields (as specified in your con-
figuration file), the linked fields are upgraded with the link refer-
ence tags, any merged-in fields will be added, indexes will be cre-
ated for the link reference fields and local indexes will be re-

moved;
4. the records from the clone table will then be copied back to the
original table and the indexes will be updated;
5. the clone table will be removed.

 Database integrity tools

30

4. The new link reference field names will be formatted like

<tag>_linkref, so l8_linkref for example, while the index names

will be formatted like <tag>_linkr, so l8_linkr for example. If you

want, you can adjust adjust these names afterwards. You could
change the link reference field names format to
<linked_field_name>.lref for example, as is custom in Axiell

Collections applications. Changing the field names of these new
link reference fields has no impact elsewhere.
For the automatically generated index names it can be wise to
check if they are unique (case-insensitive) within the relevant da-

tabase table: if not, you’ll have to change the relevant name. Af-
ter you change an index name, you’ll have to reindex it to create

a new SQL table for it. For completeness’ sake (although not a re-
quirement) you may then remove the SQL table for the index that
was created by this tool automatically, because it no longer serves
a purpose. Removing an index table can be done with SQL Server
Management Studio.

Database integrity tools

31

6 InternalLinkCheck

Of internal links, InternalLinkCheck.exe checks if the forward and
backward references match up and reports any errors. If you use the
optional fix parameter, those errors are repaired as well.

The tool runs both on internal links where the links are defined on
term, as well as on internal links where the links are defined on link
reference.

The syntax of InternalLinkCheck.exe is:

InternalLinkCheck <data folder> <database> <tag|*> [fix]

in which fix is optional: without it, InternalLinkCheck only performs a

check. The tag must be one of the tags in an internal link definition or

an asterisk:

• If the tag is the central tag in an internal link definition with three
tags, then all internal links with that central tag will be
checked/fixed.

• If the tag is one of the (non-central) relation tags (like nt, bt, rt
etc.) then only that specific internal link will be checked/fixed.

• If tag = *, then all internal links in the provided database will be
checked/fixed.

Example:

InternalLinkCheck ..\data thesau te fix

 Database integrity tools

32

7 RemoveLanguageFromData

RemoveLanguageFromData.exe can be used is two different ways: to
convert a multilingual field into a unilingual one or to remove specific
multilingual data.

Be advised to create a backup before applying this tool.

7.1 To convert a multilingual field into a unilingual
one

This way to use the tool will remove all language attributes (of possi-
bly multiple languages) and only keeps the data of the primary lan-
guage.

If in the command-line command "nl-NL" is set as the primary lan-

guage, while there are nl-NL and en-GB values, then all en-GB values
are deleted entirely, while the nl-NL values are kept without language
attribute.

Change all relevant fields to NON-multilingual before you run the tool.

(The multilingual settings in the pbk can stay as they are, if desired.)

The syntax of calling the tool (which can be displayed by starting the
tool without any parameters) is as follows:

RemoveLanguageFromData <data folder> [fix (default)|check]

[*|databases (comma separated list)] [primary language (de-

fault="en-GB")]

7.2 Remove certain multilingual data

The alternative way to use this tool (available from 2020-09-07) is to
use it to remove data in specified languages (along with their lan-

guage attributes of course) from the database whilst maintaining the
multilingual character of the field.

You can specify to remove data in one of more languages. Specify an
empty primary language, using two double quotes. The syntax then
becomes (with an optional last parameter):

RemoveLanguageFromData <data folder> [fix (default)|check]

[*|databases (comma separated list)] [primary language (de-

fault="en-GB", so use "")] [specific languages to remove

(comma separated list of language attribute codes)]

Database integrity tools

33

Example, to remove data in languages iv-IV and fr-FR:

RemoveLanguageFromData C:\Collections\data fix collect ""

"iv-IV,fr-FR"

Monolingual data (data without language attributes) should never oc-
cur in multilingual fields, but if it does anyway, you can remove it
(even if it has proper multilingual data too), by leaving the last pa-
rameter empty as well, like so for example:

RemoveLanguageFromData C:\Collections\data fix collect ""

""

7.3 The log

The check or fix log will only be visible in the command line window.
Note that when using the check option, nothing is changed although

the log implies it has: it states that values were deleted, while actually

they weren't. The fix option reports the same log and has actually

deleted values and/or language attributes.

 Database integrity tools

34

8 AddDataLanguage

Multilingual fields should never contains values without language at-
tribute. This may occur though if previously monolingual fields which
already contained data, have been made multilingual by marking the
relevant checkbox in the field properties in the .inf.
In Collections, if you right-click the field that was made multilingual
while it already had data in it (and it won’t show in the displayed rec-
ord in Collections anymore), and select Properties in the pop-up

menu, you should still see the field value without language attribute.
After this tool has run with the fix parameter, the language attribute

should be visible in the properties and the value itself should be visi-
ble in the record itself when the proper data language is active.

The command-line AddDataLanguage.exe is used to either just report
on all missing language attributes on monolingual field values in mul-
tilingual fields or to fix them as well by adding a language attribute to
the values.

Be advised to create a backup before applying this tool.

Syntax:

AddDataLanguage <data folder> <language> [check|fix] [data-

base] [field]

• <data folder> - mandatory; path to the data folder of the appli-

cation

• <language> - mandatory, in the format 'xx-YY' (e.g. en-GB or de-

DE)

• [check|fix] - optional, choose between check or fix: check

reports the missing language attributes and fix also adds them to

the record; when the attribute is left out it works like check

• [database] – a comma separated list of databases to be repaired:

use * for all databases; when the attribute is left out it works like
*

• [field] – a comma separated list of fields to be repaired; use *

for all multilingual fields; when the attribute is left out it works

like *

Database integrity tools

35

The tool reports all the missing language attributes, per database,

record, field and occurrence. The tool’s report can be redirected to a
file.

A command-line example:

AddDataLanguage "\\fs01\Support\TEST

MANAGEMENT\TestCases\BugFixTestApplicatiesErik\Eriks test

application 4.5.2\data" en-GB check document

For a check, nothing is done with the data language. Only with fix is

the change applied. Do a check first, then a fix.

